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Abstract—A unified theory for the complementary-dual bounding theorems of limit analysis is
established with the aid of convex analysis. Based on the property of superpotential in this theory,
various variational principles are constructed. which include a new lower bound theorem. a more
precise estimation for the safety factor and a penalty-duality type variational principle. Further-
more, an efficient penalty-duality algorithm for limit analysis is suggested and the applications of
these theorems are illustrated.

I. INTRODUCTION

[tis well known that the classical lower bound theorem of limit analysis is actually equivalent
to a non-lincar optimization problem with both equality (equilibrium condition) and
inequality constraints (plastic yield condition). In engineering problems, it is rather difficult
to choose proper statically admissible functions. In order to relax the yield condition in this
problem, various methods have been suggested by different authors{1-5]. The duality about
this variational problem has been discussed by Temam and Strang(6, 7} based on the theory
of convex analysis. .

It has been pointed out in Ref. {§] that in the variational boundary value problems of
a mathematical and physical system, any condition concerning a physical property (such
as incompressible condition, plastic yicld condition and friction boundary condition, ctc.)
cannot be considered as a variational constraint, this kind of condition should appear in
the variational functional by introducing a so-called superpotential[9, 10], the subdifferential
of this superpotential will yield the corresponding physical law. Hence, a universal com-
plementary-duality principle about the variational boundury value problem has been estab-
lished in Ref. (8], which shows that there exists an elegant symmetry in the mathematical
and physical system.

According to this universal principle, a true complementary bound theorem has been
established in this paper by using Fenchel transformation. In this bounding theorem,
the plastic yicld condition is reluxed by the complementary plastic superpotential, its
subdifferential yiclds the plastic flow constitutive equation. Based on the property of this
superpotential, various variational principles about limit analysis are established, and a
new lower bound theorem is proved. An efficient penalty-duality algorithm is suggested to
solve limit analysis problems. Applications are illustrated by examples of structure analysis.

2. SUPERPOTENTIAL AND GOVERNING EQUATIONS
Let Q be an opcen, bounded, connected subset of R* with a Lipschitz boundary I, E
and X the admissible strain and stress space, respectively
E={eell(Q)e=1g,}=¢. ij=1273]
Li={oel/Q)|o={0,} =0, ij=1273}
where p, g are dual numbers: 1/p+ l/q = 1. The bilincar form (*,*>: Ex Z — R is defined

as {o.&) = g,,¢&,;. For a rigid-perfectly plastic material (Levy-Mises media). the constitutive
law may be written as
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tre=0 a.e. in Q

flo) <0 a.e. in Q n
. .¢f(o)

¢ =15 0(9) or o= 2 oY) in Q

le?|

where “tr” is the trace operator, f the plastic yield function

f@) =1t —ay = J (1) -0, ()

1/ the stress deviator, o, a material constant, 4 > 0 the plastic flow factor, and ® the jump
function

I €20

0 (<0 3)

() = {

¢(x): Q — Ris the stress type dividing-domain function[8, 1 1], ¢(x) = f(z(x)): Y(x): Q —
R is the conjugate dividing-domain function, §(x) = |¢/(x)|.
Let
C:={ceE|tre=0 ae inQ} 4)
K:={oeXZ|f(6) <0 ae inQ}. 5
Then, the superpotential function for rigid-perfect plasticity may be written as
w(e) = ap|e! | D) + P (e) (6)

where W.: E - (— o0, o] is the indicator function of set C

0 ifeeC

oo ife¢gC. )

We(e) = {

It is obvious that w: E — (— a0, 0] is convex, lower semicontinuous, so constitutive law
(1) may be written in the following unified form:

e dw(e). 8)

If C is non-cmpty, then one should have (cf. e.g. Ref. [12])

dw(e) = l-gj—ledm(.p)wwc(s) 9)
where
7 o ifeeC
¥ele) = {0 ife¢ C (10)

{ is an undetermined parameter, I a unit tensor.
The conjugate superpotential of w(g) may be given using the Fenchel transformation

w*(1) :=sup {{1.&) —w(e)}. (n
ce k

It should be noted that if ee C, then one has
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w(e) = a,e’|O(Y) = sup L 1E10W))> = (). (12)

In convex analysis, W§ is the support function of convex set X, its conjugate function must
be the indicator function of set K, hence one has

w*(1) = sx:? {(t, 8> —w(e)}
= sup {<r,&) -Yie)}

= W (1). (13

Therefore, the complementary superpotential for rigid—perfect plasticity is just the indicator
function of convex set K. Thus, the inverse form of constitutive law (8) may be written as

A?-%Q if f(1)=0,1>0
eedw* (1) = | {0} if f(r) <0 (149
0 if f(r) > 0.

It may be proved by convex analysis that the following conditions are equivalent :

(a) tedw(e);
(b) ceow*(1):
() w()+w*(1) = (& ).

Assume that U is the space of admissible velocity, L the conjugate space of U, D: U —
E the linear deformation operator, Dv = {(Vv+0V); D*: £ — L the conjugate operator,
D*t = —V-1, then, the boundary value problem of limit analysis beccomes finding the
safety factor S, > 0 and field functions (u, o) such that

Du—e=0 inQ, u=0 onl,;
D*¢—b=0 inQ, o'n—-S,t=0 onl,;
cedw(e) or eedw*(c) inQ. (15)

It is useful in limit analysis if one puts

J. trudx=1 (16)
r'

—-V:'se inQ

nc onfl.

D*a = l(g) = { (7"

3. COMPLEMENTARY BOUNDING THEOREMS

Define the kinematic admissible subspace U, such that

U,,=={veUlv=Oon r., fv-tdx:l}. (18)

rl

The upper bound of the safety factor S, : U, = (— o0, o0] may be given as
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S.(v) = Lldblsd(t‘)lfb('ﬁ)+‘*’c(€(t‘))] dx-J- v-bdx (19)
Q

Theorem 1. For all v€ U,. the safety factor S, is the infimum of S,(v), i.e.

S. = inf S,(¢). (20)

rel,
Proof. An element u of U, is the optimization solution of problem (20) if and only if
0€éS,(u). (21)

If w(Dv) is continuous at point u, then the subdifferential extremum condition (21) will
yield the equilibrium-constitutive equation(8]

b in Q

D*ow(Du)a D*a(Du) = {S ot onl

(22)

i.e. the stress associated with solution u is statically admissible. So the optimization solution
u must be the complete solution of boundary value problem (15), and §, gives ris¢ to the
safety factor. QED

If re U, C, then functional (19) becomes $*: U, C — (~ o0, 0]

St@) = f os)e’ ()] dx—J“b'v dx (23)
Q

one has the classical upper bound theorem
S.=inf S*(v) VYvelU,nC. (24)

In order to establish the dual theorem of Theorem 1, functional (19) can be written in the
following form:

I(e(v),v) == W(e(v))—wa dx+Y¥y (v) (25)

where

faw(e) dx ifweL'(Q)
W(e):= {OO

otherwise.

It is obvious that IT: Ex U — (— o0, cc] is a convex, lower semicontinuous, proper func-
tional, so problem (21) may be written as

M(Du,u) = inf IT(Dv, v). (26)

rel

According to the theory of convex analysis, the conjugate functional [1* : Z x L — (~ o0, 0]
of I(e, v) may be obtained by the Fenchel transformation

*(t, = D*1) == sup sup {{7,&dq + {— D*t,vDq — (e, 1)} 27
v

re& ve

where
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{~ltyp= L {(—~1Lv) dx+£ (=1 dx.
Considering eqns (13), one has

W*(1) = sc\:g {{r,edq—-W(e)} = L‘Px(r) dx. (28)

Moreover, it is easy to prove that

sup {{—D*r,t0q —¥¢, (0) +<b.vDa} = ¥ ()-S5 (1) (29)

rell

where X, is the statically admissible space
Z,={teZ|D*t~b=0inQ, t°n—8S t=0o0nT} (30)

and S~ > 0 is a statically admissible factor associated with te Z,. Thus one has the com-
plementary variational functional of I(s, ¢) (25)

M*(z, ~D*1) = W) =S (1) + W (7). a3n

Letting Si(t): £, — {— o0, c©) be a concave, upper semicontinuous functional
Si(1):=5"(v) —‘[ We(r) dx (32)
H

then the dual bound theorem of the limit analysis problem may be given as follows.

Theorem 2, For all statically admissible fields 1€ Z,, the safety factor S, is the supremum
of 8(1). i.c.

S. = sup Si(z). (33)

tel,

This is a rcal complementary lower bound theorem of limit analysis, it wiil be proved by
the next theorem. If the statically admissible field satisfies the yield condition almost
everywhere in €, then eqn (33) will degenerate into the classical lower bound theorem

S.=sup S (r) VteZ,nK. (34)

According to the theory of convex analysis[12], the Lagrangian §,: UxZ — (— o0, 0]
associated with functional (32) is[8]

‘L[r-Dv—‘{‘K(t)-—b'v] dx—f vt ndx
rl

J- v dx
rl

It should be noted that S, is a saddle functional, i.e.

S.(e, 1) = (39
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Si(#.7): U— (==, + x] is convex, lower semicontinuous;

Si(v,#):Z = (—oc, +oc) is concave, upper semicontinuous.
So. the generalized variational principle of limit analysis may be given as follows.

Theorem 3. For any given admissible fields (v,t)e Ux I, the safety factor S, is the
saddle point value of the Lagrangian S, (v, ). i.e.

S. = inf sup S, (v, 7). (36)

velU teX

Proof. It is easy to prove that problem (36) is equivalent to the following problem:
find (1, o) such that for any given (t.1)e Ux X

L(u,0) = inf supL{r.7) 37

rel teX

where L: UxZ — (— o0, 4+ 0] is the Lagrangian associated with IT*(r, — D*1):

vetende-S, J‘ tody. (38)
" T

’

L(v,1):= L [tDe—W(t)—bv] dx— j

T
If dom W (1) # ¢, then the extremum condition

(0,0) e L(u, o) (39)
will yicld the Euler-Lagrange cquations

DuedV¥,(o), D*s—-bh=0 inQ
u=0onl, on-S.-t=0 onT, {40)

Substituting eqns (40) into eqn (36), one must have

inf sup 8, (v, 1) = S, (1, 6) = S..

rel tel

Hence, the proof is completed. QED

According to the complementary variational principle[8], it is easy to prove that

S.(v) = sug S.(v, 1) “1)
Si(1) = inf S, (v, 7). (42)
rel/

And one has the complementary-dual extremun principle : for any given (v,1)e U, x Z,
Si(1) € §i(0) = S (u,0) = S, (1) < S,(v). (43)

Theorems 2 and 3 are two important theorems, according to the property of superpotential,
various variational principles for limit analysis may be constructed correctly.
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Tb

Fig. 1. Linear hardening rigid plastic model.

4. CONSTRUCTIONS OF VARIATIONAL PRINCIPLE

The simplest construction of the superpotential ‘¥ ,(t) can be given by

I,
¥o(ra) =5 A(D)O(¢) (44)

where a > 0 is a penalty factor, the jump function ®(¢) is given by eqn (3). It is obvious
that for any given te X, onc has

Yi(r) = sup¥,(r,a0) = lim W, (1,2). (45)

2> 0 x-0 40

So the penalty-type variational principle of limit analysis may be established by substituting
eqn (45) into eqn (33)

S, = lim sup {S ; (r)—‘[ W, (t,2) dx}. (46)
2

2+ +0 tek,

The physical significance of the penalty-type superpotential is also very clear, it comes from
the plastic hardening media. Considering a rigid plastic material with linear hardening
property shown in Fig. 1. For any given hardening parameter « > 0, the plastic com-
plementary energy is w¥(z) = ‘¥ (7, ). When the hardening parameter « — 0, i.e. perfectly
plastic media, the complementary energy w?(r) — w*(tr) = W(r). Actually, the com-
plementary energy variational principle for rigid plasticity was first obtained in 1983 in this
way[13]. Based on the penalty-type variational principle (46), the penalty finite element
model of limit analysis may be established, which accords a method of sequence optimization
for boundary value problem (15). However, unfortunately, from the numerical analysis
point of view, the discretized equations obtained from eqn (46) are quite often ill-con-
ditioned if the penalty factors used are large enough, and the convergent rate of this method
is rather slow. These disadvantages are inherent in the penalty function methods.
The complementary construction of penalty type is the duality-type construction

Wy(t, ) = Af(1)P(¢) (47)
where A > 0 is the dual variable of function f(t). For any given t€ X, one should have

Ye(r) = iup Yi(t, A). (48)
>0

Substituting eqn (48) into eqn (35). the duality-type generalized variational principle for
safety factor S. may be obtained as
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S. = inf sup inf S,(r,1.4) (49)

rel el 420

where

~
{

J [tDe—Af()D(P)—b"1] dx—f retondx
2 r,

St T, 4) = — . (50)

r,

This principle was first obtained in 1983[11] using the classical Lagrange multiplier method
combined with a new variational technique of movable domain. It has been proved that
for Mises” yield function (4). the dual variable (i.e. Lagrange multiplier) may be written as

A(r) = [ (0)]. (51)

From the convex analysis point of view, it is ditlicult to solve the non-linear programming
problem with incquality constraint using the classical Lagrange multiplier method. But,
based on this genceralized variational principle (49), two important thcorems may be
established.

Theorem 4. For any given independent cariables (r.t) € U, x Z,,, the following inequalitics
are true

S.(r,0) =28 (1) VieX, nK (52)
S (e, 1) <S8 (r) Veel,nC (53)

where S, U, x E, = (— w0, + ) is determined by putting O(p) = | in functional S,
S0, 1) = J; [tDe—A(v) f(1)] d.\‘—-J; bev dx. (54)
Proof. Since f(t) £ 0, A(r) = 0 for any given te K and ve U,. it is true that
S.(r,1)=S (v)= —L Al)f(z) dx = 0.
Moreover, for any given re U, n C, onc has
S ()=S,.(0.7) = L ) 1ef @) = e (0)] dx.

Hence, the sccond inequality (53) is also truc taking the Cauchy-Schwartz inequality into
account. QED

Letting the body force A = 0 (in Q). then one has the following.

Theorem 5. For any given statically admissible field teZ,. if |t'|®(¢) is nonzero
everywhere in Q. then one has
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6,87 (1)

e > max {I()I0(P)} e

Proof. According to the duality-type generalized variational principle (49), one has

S. = sup inf S,(r.t,A()) = suf {S“ () —L A f(D)D(P) dx}

tel rel/

where u is the solution of problem (20). So for any given 1€ X, one has

S. =285 (1) —j A) f(1)D(P) dx
9]

2 57 (1) —max S @) (H(x))} J; AMu) dx. (56)

Since
S, = vignbf; L o,A(1) dx = J; aA{u) dx 57
Theorem § is proved by substituting eqn (57) into eqn (56). QED

Introducing both penalty factor and dual variable, an interesting penalty-duality type
construction of supcrpotential Wi (r) may be obtained

Woult, A a) 1= ; {[H— éf(f):l.‘b((b,) -lz} (38)

where

b=t 1)

is the so-called penalty—duality dividing domain function. It may be proved that for any
givente X

We(t) = sup sup W, (1, 4, 2). (59)

A30 2>0

According to Theorem 3, the penalty-duality type generalized variational principle of limit
analysis may be given as follows.

Theorem 6. There exists an a, > 0. such that for any given x€(0,a,], the safety factor
S. is the stationary value of the following variational problem :

S. = inf sup inf S, (v, 7,4, %) (60)

vel 1€l ix0

where
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J‘ [tDv—"Y, (1, 4, 2)] d.v—J bv d.v—j n-tevdx
Q 19 T

f t-rdx
rl

The proof of this theorem may be found in Ref. [9]. Based on this theorem, an efficient
algorithm for the safety factor may be suggested.
Given the penalty—duality parameter z, > 0, 4, 2 0, determine o,, «,. S, by

Spilt. T, A 2) = (61)

S, = inf sup S,,(v. 1, 4,,2,). (62)
z

rel re

Then, modify the penalty—duality parameter by

72%n If If(dn), 2 glf(an-l)l
Ins1 = 2, otherwise (63)
';w w1 = {;'n + ;’j(an)}(b(d)x) in Q (64)

where y€[0.1,0.25], 0€[0.1.0.5] are constants determined by numerical experiments. The
convergent rate of this algorithm is controlled directly by the penalty factor a,. The smaller
a,,, the faster the convergent rate. But the disadvantages of the pure penalty function method
will appear in this algorithm if a sufficiently small penalty factor is taken.

5. APPLICATIONS

For the simply supported circular plate subjected to a uniform distributed load, the
domain Q is

Q={r0/0<r<1,0<0<2n}.
Mises® yield function f for this problem is
Sim,,) = J(m?+mi —mmy,)—1.

Choosing the try functions of deflection we U,, the generalized variational functional (35)
may be written as

2n i
S.(w,m) = J J [—nw,, —mgw, fr—"¥(m,, my)]r dr d0. (65)
n 0

First of all the approximate solutions of the safety factor S, are found using Theorem 4
with different try functions.

D m=1l=rim=1w=B/(~r)

Using the condition
in t
J J werdrdf =1
0 0

the constant 8, may be determined as B, = 3/z. Substituting try function (i) into
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Table {. Numerical results of penalty—duality algorithm

z, ;'n L f ("w) \Ilpd("no 'i'm 1-) Sn
n=0 0.1000  0.0000 1.3240 0.2070 0.7176 7.2240
n=1 0.0400 2.0700 1.0960 —-0.094% 0.0690 6.5040
P 1
S, (w,m) = J J. [—mw,, —myw,[r—i(w)f(m, m,)}r dr d6 (66)
0 [+]

one should have S,, = 6.528. With the same try functions, the classical bound theorems will
give the upper and lower bound values of limit load: $* = 6.93, S~ = 6.0. The correct
solution of this problem is S, = 6.51, the relative error of the approximate solution S, is
only (§,—S.)/S. = 0.3%.

i) m=1l—r.my=1,w=B,(1-r)

In the same way, one has S,, = 6.35, $* = 8.0, S~ = 6.0. Now, one can find the limit
load of this problem by using the penalty—duality variational principle (60).

Choosing the try functions.

5
(i) m, =n(l=r), my =n, w= ;(l —r)

Here 1 > 0 is a paramcter. Substituting try functions (iii) into penalty—-duality varia-
tional functional (61), onc has

S,u(won, Aa) = 6n—"P,,(n. 1, ) (67)

V,u(n. 2 a) =2n J

0

{ [l+ i/(m(n»]lbw,) _,_z}, dr. (68)

The dividing domain function ¢, may be determined approximately by

1 (!
¢, =4+ &f('"('l)) =i+ ;L JS(m(m)r dr. (69)

Choosing the primal value a, = 0.1, 2, = 0,y = 0.4, 0 = 0.25, for given precision o = 0.001,
the numerical results obtained using the penalty—duality algorithm are shown in Table I.

The numerical experiment shows that the penalty—duality algorithm possesses the
higher precision and faster convergence rate. Based on this algorithm, a computer program
consisting of about 2000 Fortran statements is developed in Ref. {8], and several engineering
problems can be calculated[14].
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