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Abstract-A unified theory for the complementary-dual bounding theorems of limit analysis is
established with the aid of convex analysis. Based on the property of superpotential in this theory.
various variational principles are constructed. which include a new lower bound theorem. a more
precise estimation for the safety factor and a penalty-duality type variational principle. Further
more. an efficient penahy-duality algorithm for limit analysis is suggested and the applications of
these theorems arc illustrated.

I. INTRODUCTION

It is well known that the classical lower bound theorem oflimit 'Inalysis is actually equivalent
to a non-linear optimization problem with both equality (equilibrium condition) and
inequality constraints (plastic yield condition). In engineering problems, it is rather ditlicult
to choose proper statically admissible functions. In order to relax the yield condition in this
problem, various methods have been suggested by dilTerent authors[I-5]. The du.tlity about
this variational problem has been discussed by Temam and Strang[6, 7] based on the theory
of convex analysis.

It has been pointed out in Ref. [8] that in the variational boundary value problems of
a mathematical and physical system, .Iny condition concerning a physical property (such
as incompressible condition, plastic yield condition and friction boundary condition, etc.)
cannot be considered as a variational constraint. this kind of condition should appear in
the variational functional by introducing a so-called superpotential[9, 10]. the subdilferential
of this superpotential will yield the corresponding physical law. Hence, a universal com
plementary-duality principle about the variational boundary value problem has been estab·
lished in Ref. (8], which shows that there exists an elegant symmetry in the mathematical
and physical system.

According to this universal principle, a true complementary bound theorem has been
established in this paper by using Fenchel tmnsformation. In this bounding theorem,
the plastic yield condition is relaxed by the complementary plastic superpotential, its
subdilferential yields the plastic flow constitutive equation. Rased on the property of this
superpotential, various variational principles <tbout limit analysis arc established, and a
new lower bound theorem is proved. An efficient penalty-duality .11gorithm is suggested to
solve limit analysis problems. Applications are illustrated by examples of structure analysis.

:!. SUPERPOTENTIAL AND GOVERNING EQUATIONS

Let Q be an open. bounded, connected subset of R 1 with a Lipschitz boundary r, E
and I; the admissible stmin and stress space. respectively

E:= {r.e U(Q)I r. = {I:"l = f.t, i,j = I, 2,3}

I;:= {l1eL"(Q)111 = {l1til = rr', i,j = 1,2,3:·

wherep, q are dual numbers: IIp+ IIC{ = 1. The bilinear form <.,.>: Ex r. ~ R is defined
as <rr. 6> = l1 i /f.,;. For a rigid-perfectly plastic material (Levy-Mises media), the constitutive
law may be written as

$"S H:6-'\ 545
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tr I: = 0 a.e. in il

}1«(1) ~ 0 a.e. in il
( I)

I:d = /~«(1) $(4)) ~ (1h d in ilor = I7fI: $("')(1

where "tr" is the trace operator. 1 the plastic yield function

(2)

fd the stress deviator, (1b a material constant, ;. ~ 0 the plastic flow factor, and $ the jump
function

$n = {I (, ~ 0)
I, 0 (, < 0)

(3)

4>(x): il -> R is the stress type dividing-domain function[8. II]. 4>(x) = l(f(X»; "'(x): il->
R is the conjugate dividing-domain function. "'(x) = 11:"(x)l.

Let

C:={sEEltrs=O a.e.inill

K:= {(1EL I /«(1) ~ 0 a.e. in ill.

Then. the superpotential function for rigid-perfect plasticity may be written as

where 'fI{': E -> ( - 00.00] is the indicator function of set C

{
o if r.EC

'fIdr.) = 'f .,l C
00 I 1,1' .

(4)

(5)

(6)

(7)

It is obvious that w: E -> ( - 00,00] is convex, lower semicontinuous, so constitutive law
(I) may be written in the following unified form:

fEvw(e).

If C is non-empty, then one should have (cf. e.g. Ref. [12])

where

(8)

(9)

{,Ic'flds) = "
if r.EC

ifs~C
( 10)

( is an undetermined parameter. I a unit tensor.
The conjugate superpotential of w(e) may be given using the Fenchel transformation

W*(f):=sup{(r,r.)-w(r.)}.
r.e t:

It should be noted that if r. EC. then one has

(II)
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w(s) = O"blsdl(J)(r/I) = SUI) <1f"1, 1~1(J)(r/I» = 'I':(S).
.d:

547

(12)

In convex analysis, '1': is the support function of convex set K, its conjugate function must
be the indicator function of set K, hence one has

w*(t) = sup {(t,s)-w(e)}
tEE:

= sup {( t, s) - 'I'ns)}
tEe

(13)

Therefore, the complementary superpotential for rigid-perfect plasticity isjust the indicator
function of convex set K. Thus, the inverse form of constitutive law (8) may be written as

{

,Cf(t) .
Ir.-a- If f(t) = O. A. ;;?; 0

I:EOW*(t) = {O} t if f(t) < 0

o if f(t) > O.

It may be proved by convex analysis that the following conditions are equivalent:

(a) t E OW(f:) ;
(b) f.EOW*(t);
(c) W(f:) +w*(t) = (f:. t).

(14)

Assume that V is the space of admissible velocity. L the conjugate space of V. D: V .....
E the linear deformation operator, Dl' = HVv+vV); D*: I: ..... L the conjugate operator.
D*t = - V, t. then. the boundary value problem of limit analysis becomes finding the
safety factor S, > 0 and field functions (11.0") such that

DII-f. = 0 in n.
0"' n - Sc' t = 0 on r,;

It is useful in limit analysis if one puts

r t 'II dx = IJr,

(15)

(16)

{
-v.a

D *a = I(a) =
n'a

in n
on r. (17)

3. COMPLEMENTARY BOUNDING TIIEOREMS

Define the kinematic admissible subspace Va such that

The upper bound of the safety factor Su: Va -+ ( - 00. 001may be given as

( 18)
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Theorem I. For all v e ["~. the safety factor Sc is the infimum of S.(v), i.e.

Sc = inf S.(v).
rE V,

( 19)

(20)

Proof An element u of Va is the optimization solution of problem (20) if and only if

OeoS.(u). (21 )

If w(Dv) is continuous at point u, then the subdifferential extremum condition (21) will
yield the equilibrium-constitutive equation[8]

{
b in Q

D·ow(Du) 3 D·u(Du) = Sc't on r, (22)

i.e. the stress associated with solution u is statically admissible. So the optimization solution
u must be the complete solution of boundary value problem (15), and S. gives rise to the
safety factor. QED

If l' e V~ 11 C, then functional (19) becomes S+ : Va 11 C -- ( - 00, 00]

one has the classical upper bound theorem

S" = inf S+ (I') 'r/ ve Va 11 C.

(23)

(24)

1n order to establish the dual theorem of Theorem I, functional (19) can be written in the
following form:

where

n(t:«(l). v) := W(t:(v» - Lh' v dx+ 'IIu.,(v)

{
SOW(t:)dX ifweL'(Q)

W(t:) := 00 otherwise.

(25)

It is obvious that n: Ex U -+ (- 00,00) is a convex, lower semicontinuous, proper func
tional, so problem (21) may be written as

n(Du, u) = inf n(Dv, v).
t'eU

(26)

According to the theory ofconvex analysis, the conjugate functional O· : L x L -- ( - 00, 00)

of n(t:, v) may be obtained by the Fenchel transformation

where

n·(r. - D*r):= sup sup {(r, e)o +(- D*r, v)n - n(r., v)}
l:eG t'EU

(27)



On the complementary bounding theorems for limit analysis

<-I,r)n =i <-1,tJ) dx+r<-I,v) dx.

Considering eqns (13), one has

W*(t) =sup {(t.s)o- W(s)} = r'I',\:(t) dx.
<"E .10

Moreover. it is easy to prove that

where :Ea is the statically admissible space

:Ea '= {te:EID*t-b = 0 in n. 1:·n-S-·t = 0 on r,}

549

(28)

(29)

(30)

and S- > 0 is a statically admissible factor associated with 1: E :Ea. Thus one has the com
plementary vari.ttional functional of n(r.. v) (25)

(31)

letting S/(t): :Ell"'" [- 00,(0) be a concave. upper semicontinuous functional

(32)

then the dual bound theorem of the limit analysis problem may be given as follows.

Theorem 2. For all statically admissible fields 1: e :Ea , the safety factor S,. is the supremum
of S/(1:). i.e.

S,. =supS/(r).
fEt..

(33)

This is a real complementary lower bound theorem of limit analysis, it will be proved by
the next theorem. If the statically admissible field satisfies the yield condition almost
everywhere in n, then eqn (33) will degenerate into the classical lower bound theorem

S,_ = sup S- (r) Vre:Ea n K. (34)

According to the theory of convex analysis[12], the Lagrangian SL: U x:E ..... ( - 00,001
associated with functional (32) is[8]

1[1:' Dl'-'I'K(t) -b' v] dx-1. v' r'n dx

SL(l\ 1:):= 1
t·v dx

r,

It should be noted that SL is a saddle functional, i.e.

(35)
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SL (*. r) : V -+ ( - X. + :x] is convex. lower semicontinuous;

Sdc. *): L -+ (- x. + x] is concave. upper semicontinuous.

So. the generalized variational principle of limit analysis may be given as follows.

Theorem 3. For any giren admissible fields (t', r) e V x L. the safety factor Sc is the
saddle point l'alue of the Lagrangian SL(['. r). i.e.

S,. := inf sup SL (t'. r).
oe U ,eI:

(36)

Proof It is easy to prove that problem (36) is equivalent to the following problem:
find (u. u) such that for any given (c. r) e V XL

L(u. u) := inf sup L(c. r)
l'E U reI:

where L: V XL -+ (- 00. + 00] is the Lagrangian associated with n*(r. - D*r):

(37)

L(!',r):::: [[rDI'-'P",(r)-h.t.] dx- [ l"r'ndx-S, [ t'l'dx. (38)1 Jru Jr,

If dom 'PA:( r) #- 0. then the extremum condition

(0.0) e DL(u. (1)

will yield the Euler--Lagrangc cljuations

Due iJ'P",(u) , D*u-h = 0 in n
u = 0 on f u • u'n-Sc't = 0 on f,.

Substituting eqns (40) into eqn (36). one must have

inf sup Sdv. r) := Sr.{u.(1) = S,.
f'€ U teE

Hence, the proof is completed.

According to the complementary variational principle[8]. it is easy to prove that

Su(v) = sup Sdl'. r}
,el:

S,(r) = inf S/.(l'. r).
,'eU

(39)

(40)

QED

(41 )

(42)

And one has the complementary-dual extremum principle: for any given (v. r) E Va X La

(43)

Theorems 2 and 3 are two important theorems. according to the property ofsuperpotential.
various variational orincioles for limit analysis may be constructed correctly.
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Ub i-"'===----...J..--=---------

Fig. I. Linear hardening rigid plastic model.

4. CONSTRUCTIONS OF VARIATIONAL PRINCIPLE

The simplest construction of the superpotential 'I'K(t) can be given by

55l

(44)

where IX > 0 is a penalty factor. the jump function (l>(cP) is given by eqn (3). It is obvious
that for any given t Er. one has

'I',..(t) = sup'l'p(t.lX) = lim 'l'p(t, IX).
:I> () ~ -. + ()

(45)

So the penalty-type variational principle of limit analysis may be established by substituting
elln (45) into eqn (33)

S,. = lim sUP{S'(t)- r 'l'p(t,lX) dX}.
2- +-0 fet" !J (46)

The physical signilicance of the penalty-type superpotential is also very clear, it comes from
the plastic hardening media. Considering a rigid plastic material with linear hardening
property shown in Fig. I. For any given hardening parameter IX > O. the plastic com
plementary energy is w:(t) = 'l'it.IX). When the hardening parameter IX -+ 0, Le. perfectly
plastic media, the complementary energy w:(t) -+ w*(t) = 'I',..(t). Actually, the com
plementary energy variational principle for rigid plasticity was tirst obtained in 1983 in this
way[I3]. Based on the penalty-type variational principle (46), the penalty finite element
model oflimit analysis may be established, which accords a method ofsequence optimization
for boundary value problem (15). However. unfortunately, from the numerical analysis
point of view, the discretized equations obtained from eqn (46) are quite often iII-con
ditioned if the penalty factors used are large enough. and the convergent rate of this method
is rather slow. These disadvantages are inherent in the penalty function methods.

The complementary construction of penalty type is the duality-type construction

'I'At. ;.):= ;.f(t)(I>(cP) (47)

where;. ~ 0 is the dual variable of function f(t). For any given tE r. one should have

'I' .... (t) = sup'l'At,A.).
),;00

(48)

Substituting eqn (48) into eqn (35). the duality-type generalized variational principle for
safety factor Sc may be obtained as
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where

Y. GAO

S, = inf SUp inf S,,(l', t, ;.)
c'eL' !E! ..("3:0

j'~ [tDI'-;'/(t)<P(<!J)-b'l'] dx- ( l"t'n dx
. II Jr,

SAl", r, .... ):= ~-------

{ t'l' dxJr,

(49)

(50)

This principle was first obtained in 1983[1 I] using the classical Lagrange multiplier method
combined with a new variational technique of movable domain. It has been proved that
for Mises' yield function (4), the dual variable (i.e. Lagrange multiplier) may be written as

;.(r) = 1<:"(1')/. (51 )

From the convex analysis point of view, it is dillkult to solve the non-linear programming
problem with inequality constraint using the classical Lagrange multiplier method. But.
based on this generalized variational principle (49), two important theorems may be
established.

71u'orcm4. For any .1/icCII illc!cpcllc!clltmriah/cs (,.. r) E V" x E". thc jilllowin.lf if/equalities
are true:

s'" (I'. r) ~.s' (r) VtEE" n K

S",(c,r)~S'(I') VcEV"nC

wh('l'e S",: V" x Ed .... ( -XJ, +x] is c!etermif/ec! hy pUllillg <I>(<!J) = I if/ jimetilmal S"

S",(I'.r):= ([tDI'-).(I,)/(t)] dx- (h'l'dx.JII JII

Proof Since /(t) ~ 0, ;.(1') ~ 0 for any given t E K and l'E V u • it is true that

S",(l', r) - S (t) = - ( ;.(l')/(r) dx ~ o.Ju

Moreover, for uny given l' E V un C. one has

,')"(1') -Sm(l'. r) = r [lr"III;"(v)l-r"e"(l')] dx.Ju

(52)

(53)

(54)

Hence. the second inequality (53) is also true taking the ClUchy-Schwartz inequality into
account. QED

Letting the body force h = 0 (in Q). then one has the following.

Theorem 5. For af/Y ,qicef/ statically admissihle field r E L". if Ir"I<P(<!J) is non=ero
ecerYlI'!lere if/ Q, thef/ Of/e has
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Sc ~ {d }•max. It' (x)I~(4»
.<EO

55)

(55)

Proof According to the duality-type generalized variational principle (49), one has

where u is the solution of problem (20). So for any given tE1:", one has

S" ~ S- (t) - i ;'(li)f(t)~(4» dx

~ S-(r)-~ea~'{{f(r(x»~(4>(X»}1A.(u) dx.

Since

Theorem 5 is proved by substituting eqn (57) into eqn (56).

(56)

(57)

QED

Introducing both penalty litctor and dual variable. an interesting pcnalty-duality type
construction of superpotential 'I\·(t) may be obtained

(58)

where

is the so-called penalty-duality dividing domain function. It may be proved that for any
given tE 1:

'P,;(t) = sup sup 'PpJ(r,;.,Cl).
1):0 3>0

(59)

According to Theorem 3, the penalty-duality type generalized variational principle oflimit
analysis may be given as follows.

Theorem 6. There exiSIS an Cl. > O. such Ihar for any git-en Cl E (0, cr.], Ihe safety jaclOr
S, is Ihe stalionary t'alue oj lire following mrialional problem:

wlrere

Sc = inf sup inf SpJ(t·, 1', A., 'X)
,'eli ,et ';loO

(60)
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r [rDt'-'Ppd(r,A.,2)] dx- rb'L' dx- r n'r'l'dx. In In Jr,
Spd(r, r, A. 2):= 1

t,t'dx
r,

(61 )

The proof of this theorem may be found in Ref. [9]. Based on this theorem. an efficient
algorithm for the safety factor may be suggested.

Given the penalty---{1uality parameter2n > O. J'n ;;,: O. determine (Tn. Un' Sn by

Sn = inf sup SpAl'. r. )'n, 2 n)·
t'E l/ fEl:

Then. modify the penalty---{1uality parameter by

(62)

(63)

(64)

where YE [0.1.0.25). 0 E [0.1.0.5) arc constants determined by numerical experiments. The
convergent rate of this algorithm is controlled directly by the penalty factor 2 n • The smaller
IX n • the fuster the convergent rate. Rut the disudvantages of the pure penalty function method
will appear in this algorithm if a sulliciently small penalty factor is taken.

5. AI'I'L1CATlONS

For the simply supported eireufur plate subjecLed to a uniform distributed load. the
domain n is

0= {r.OIO:s;;r:S;; I.O~0~2lt}.

Mises' yield function f for this problc:m is

Choosing the try functions of deflection II' E Va, the generalized variational functional (35)
may be written as

f1" 11
Sd"'.m) = [-m,w,,, -mt/lI'"lr-'P .... (m,.mo)]r dr dO.

l) I)

(65)

First of all the approximate solutions of the safety factor S,. are found using Theorem 4
with different try functions.

(i) m, = l-r 2
• mIl = I. II' = 8,(1-r2)

Using the condition

r'" r'Jo Jo 11" r dr dO = I

the constant 8 I may be determined as 8 I = 3/lt, Substituting try function (i) into
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Table I. Numerical mults orplftalty~ua1ityallorithm

2. A. If. nlf.) 'I',.,(If•• A". 2.) S.

n=O 0.1000 OOסס.0 1.3240 0.2070 0.7176 7.2240
n=1 0.0400 2.0700 1.0960 -0.094% 0.0690 6.5040

I~~ II
S",(w.m) = Jo Jo [-m,w."-m~w,r/r-;.(w)!(m,,m~)]r dr dO (66)

one should have S'" = 6.528. With the same try functions. the classical bound theorems will
give the upper and lower bound values of limit load: S+ = 6.93. S- = 6.0. The correct
solution of this problem is S,. = 6.51. the relative error of the approximate solution S'" is
only (S",-Sc)/Sc = 0.3%.

(ii) m, = I-r. m~ = I. w = B~(I-r)

In the same way. one has S'" = 6.35. S+ = 8.0. S- = 6.0. Now, one can find the limit
load of this problem by using the penalty~uality variational principle (60).

Choosing the try functions .

..,
(iii) m, = ,,(I-r). m~ =". w = -(I-r)

7t

Here" > 0 is a par~lmeter. Substituting try functions (iii) into penalty~ualityvaria
tional functional (61). one has

The dividing domain function 4>. may be dctermincd approximately by

I IiI4>. = ),+- /(m(,,» = A.+ - !(m(q»r dr.
IX IX II

(67)

(68)

(69)

Choosing the primal value 1X0 = 0.1. ;'0 = o. y= 0.4,0 = 0.25, for given precision w = 0.00 I,
the numerical results obtained using the penalty~ualityalgorithm are shown in Table I.

The numerical experiment shows that the penalty~uality algorithm possesses the
higher precision and faster convergence rate. Based on this algorithm, a computer program
consisting ofabout 2000 Fortran statements is developed in Ref. [8], and several engineering
problems can be calculated[14].
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